3.8.43 \(\int (d+e x)^{-4-2 p} (a+c x^2)^p \, dx\) [743]

Optimal. Leaf size=347 \[ -\frac {e (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right ) (3+2 p)}-\frac {c d e (2+p) (d+e x)^{-2 (1+p)} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (1+p) (3+2 p)}+\frac {c \left (a e^2-c d^2 (3+2 p)\right ) \left (\sqrt {-a}-\sqrt {c} x\right ) \left (-\frac {\left (\sqrt {c} d+\sqrt {-a} e\right ) \left (\sqrt {-a}+\sqrt {c} x\right )}{\left (\sqrt {c} d-\sqrt {-a} e\right ) \left (\sqrt {-a}-\sqrt {c} x\right )}\right )^{-p} (d+e x)^{-1-2 p} \left (a+c x^2\right )^p \, _2F_1\left (-1-2 p,-p;-2 p;\frac {2 \sqrt {-a} \sqrt {c} (d+e x)}{\left (\sqrt {c} d-\sqrt {-a} e\right ) \left (\sqrt {-a}-\sqrt {c} x\right )}\right )}{\left (\sqrt {c} d+\sqrt {-a} e\right ) \left (c d^2+a e^2\right )^2 (1+2 p) (3+2 p)} \]

[Out]

-e*(e*x+d)^(-3-2*p)*(c*x^2+a)^(1+p)/(a*e^2+c*d^2)/(3+2*p)-c*d*e*(2+p)*(c*x^2+a)^(1+p)/(a*e^2+c*d^2)^2/(1+p)/(3
+2*p)/((e*x+d)^(2+2*p))+c*(a*e^2-c*d^2*(3+2*p))*(e*x+d)^(-1-2*p)*(c*x^2+a)^p*hypergeom([-p, -1-2*p],[-2*p],2*(
e*x+d)*(-a)^(1/2)*c^(1/2)/(-e*(-a)^(1/2)+d*c^(1/2))/((-a)^(1/2)-x*c^(1/2)))*((-a)^(1/2)-x*c^(1/2))/(a*e^2+c*d^
2)^2/(1+2*p)/(3+2*p)/(e*(-a)^(1/2)+d*c^(1/2))/((-(e*(-a)^(1/2)+d*c^(1/2))*((-a)^(1/2)+x*c^(1/2))/(-e*(-a)^(1/2
)+d*c^(1/2))/((-a)^(1/2)-x*c^(1/2)))^p)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 347, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {759, 821, 741} \begin {gather*} \frac {c \left (\sqrt {-a}-\sqrt {c} x\right ) \left (a+c x^2\right )^p (d+e x)^{-2 p-1} \left (a e^2-c d^2 (2 p+3)\right ) \left (-\frac {\left (\sqrt {-a}+\sqrt {c} x\right ) \left (\sqrt {-a} e+\sqrt {c} d\right )}{\left (\sqrt {-a}-\sqrt {c} x\right ) \left (\sqrt {c} d-\sqrt {-a} e\right )}\right )^{-p} \, _2F_1\left (-2 p-1,-p;-2 p;\frac {2 \sqrt {-a} \sqrt {c} (d+e x)}{\left (\sqrt {c} d-\sqrt {-a} e\right ) \left (\sqrt {-a}-\sqrt {c} x\right )}\right )}{(2 p+1) (2 p+3) \left (\sqrt {-a} e+\sqrt {c} d\right ) \left (a e^2+c d^2\right )^2}-\frac {e \left (a+c x^2\right )^{p+1} (d+e x)^{-2 p-3}}{(2 p+3) \left (a e^2+c d^2\right )}-\frac {c d e (p+2) \left (a+c x^2\right )^{p+1} (d+e x)^{-2 (p+1)}}{(p+1) (2 p+3) \left (a e^2+c d^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(-4 - 2*p)*(a + c*x^2)^p,x]

[Out]

-((e*(d + e*x)^(-3 - 2*p)*(a + c*x^2)^(1 + p))/((c*d^2 + a*e^2)*(3 + 2*p))) - (c*d*e*(2 + p)*(a + c*x^2)^(1 +
p))/((c*d^2 + a*e^2)^2*(1 + p)*(3 + 2*p)*(d + e*x)^(2*(1 + p))) + (c*(a*e^2 - c*d^2*(3 + 2*p))*(Sqrt[-a] - Sqr
t[c]*x)*(d + e*x)^(-1 - 2*p)*(a + c*x^2)^p*Hypergeometric2F1[-1 - 2*p, -p, -2*p, (2*Sqrt[-a]*Sqrt[c]*(d + e*x)
)/((Sqrt[c]*d - Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))])/((Sqrt[c]*d + Sqrt[-a]*e)*(c*d^2 + a*e^2)^2*(1 + 2*p)*(3
 + 2*p)*(-(((Sqrt[c]*d + Sqrt[-a]*e)*(Sqrt[-a] + Sqrt[c]*x))/((Sqrt[c]*d - Sqrt[-a]*e)*(Sqrt[-a] - Sqrt[c]*x))
))^p)

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(Rt[(-a)*c, 2] - c*x)*(d + e*x)^(m
+ 1)*((a + c*x^2)^p/((m + 1)*(c*d + e*Rt[(-a)*c, 2])*((c*d + e*Rt[(-a)*c, 2])*((Rt[(-a)*c, 2] + c*x)/((c*d - e
*Rt[(-a)*c, 2])*(-Rt[(-a)*c, 2] + c*x))))^p))*Hypergeometric2F1[m + 1, -p, m + 2, 2*c*Rt[(-a)*c, 2]*((d + e*x)
/((c*d - e*Rt[(-a)*c, 2])*(Rt[(-a)*c, 2] - c*x)))], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rule 759

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*((a + c*x^2)^(p
 + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Dist[c/((m + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^(m + 1)*Simp[d*(m + 1)
- e*(m + 2*p + 3)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[
m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]) || (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ
[Simplify[m + 2*p + 3], 0])

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rubi steps

\begin {align*} \int (d+e x)^{-4-2 p} \left (a+c x^2\right )^p \, dx &=-\frac {e (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right ) (3+2 p)}-\frac {c \int (d+e x)^{-3-2 p} (-d (3+2 p)+e x) \left (a+c x^2\right )^p \, dx}{\left (c d^2+a e^2\right ) (3+2 p)}\\ &=-\frac {e (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right ) (3+2 p)}-\frac {c d e (2+p) (d+e x)^{-2 (1+p)} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (1+p) (3+2 p)}-\frac {\left (c \left (a e^2-c d^2 (3+2 p)\right )\right ) \int (d+e x)^{-2-2 p} \left (a+c x^2\right )^p \, dx}{\left (c d^2+a e^2\right )^2 (3+2 p)}\\ &=-\frac {e (d+e x)^{-3-2 p} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right ) (3+2 p)}-\frac {c d e (2+p) (d+e x)^{-2 (1+p)} \left (a+c x^2\right )^{1+p}}{\left (c d^2+a e^2\right )^2 (1+p) (3+2 p)}+\frac {c \left (a e^2-c d^2 (3+2 p)\right ) \left (\sqrt {-a}-\sqrt {c} x\right ) \left (-\frac {\left (\sqrt {c} d+\sqrt {-a} e\right ) \left (\sqrt {-a}+\sqrt {c} x\right )}{\left (\sqrt {c} d-\sqrt {-a} e\right ) \left (\sqrt {-a}-\sqrt {c} x\right )}\right )^{-p} (d+e x)^{-1-2 p} \left (a+c x^2\right )^p \, _2F_1\left (-1-2 p,-p;-2 p;\frac {2 \sqrt {-a} \sqrt {c} (d+e x)}{\left (\sqrt {c} d-\sqrt {-a} e\right ) \left (\sqrt {-a}-\sqrt {c} x\right )}\right )}{\left (\sqrt {c} d+\sqrt {-a} e\right ) \left (c d^2+a e^2\right )^2 (1+2 p) (3+2 p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(1439\) vs. \(2(347)=694\).
time = 12.45, size = 1439, normalized size = 4.15 \begin {gather*} -\frac {2 \left (\frac {e \left (\sqrt {-\frac {a}{c}}-x\right )}{d+\sqrt {-\frac {a}{c}} e}\right )^{-p} (d+e x)^{-3-2 p} \left (a+c x^2\right )^p \left (1-\frac {d+e x}{d+\sqrt {-\frac {a}{c}} e}\right )^{1+p} \Gamma (-2 (1+p)) \left (\left (d+\sqrt {-\frac {a}{c}} e\right )^3 \left (\sqrt {-\frac {a}{c}}+x\right ) \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+3 \left (d+\sqrt {-\frac {a}{c}} e\right )^3 p \left (\sqrt {-\frac {a}{c}}+x\right ) \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+2 \left (d+\sqrt {-\frac {a}{c}} e\right )^3 p^2 \left (\sqrt {-\frac {a}{c}}+x\right ) \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+\left (d+\sqrt {-\frac {a}{c}} e\right )^2 \left (\sqrt {-\frac {a}{c}}+x\right ) (d+e x) \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+2 \left (d+\sqrt {-\frac {a}{c}} e\right )^2 p \left (\sqrt {-\frac {a}{c}}+x\right ) (d+e x) \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right ) (d+e x)^2 \Gamma (1-2 p) \Gamma (-p) \, _2F_1\left (1,-p;-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )-3 \sqrt {-\frac {a}{c}} \left (d+\sqrt {-\frac {a}{c}} e\right )^2 (d+e x) \Gamma (1-p) \Gamma (-2 p) \, _2F_1\left (2,1-p;1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )-4 \sqrt {-\frac {a}{c}} \left (d+\sqrt {-\frac {a}{c}} e\right )^2 p (d+e x) \Gamma (1-p) \Gamma (-2 p) \, _2F_1\left (2,1-p;1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+4 \sqrt {-\frac {a}{c}} \left (d+\sqrt {-\frac {a}{c}} e\right ) p (d+e x)^2 \Gamma (1-p) \Gamma (-2 p) \, _2F_1\left (2,1-p;1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+3 \sqrt {-\frac {a}{c}} (d+e x)^3 \Gamma (1-p) \Gamma (-2 p) \, _2F_1\left (2,1-p;1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+\sqrt {-\frac {a}{c}} \left (d+\sqrt {-\frac {a}{c}} e\right )^2 (d+e x) \Gamma (1-p) \Gamma (-2 p) \, _3F_2\left (2,2,1-p;1,1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )-2 \sqrt {-\frac {a}{c}} \left (d+\sqrt {-\frac {a}{c}} e\right ) (d+e x)^2 \Gamma (1-p) \Gamma (-2 p) \, _3F_2\left (2,2,1-p;1,1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )+\sqrt {-\frac {a}{c}} (d+e x)^3 \Gamma (1-p) \Gamma (-2 p) \, _3F_2\left (2,2,1-p;1,1-2 p;\frac {2 \sqrt {-\frac {a}{c}} (d+e x)}{\left (d+\sqrt {-\frac {a}{c}} e\right ) \left (\sqrt {-\frac {a}{c}}+x\right )}\right )\right )}{e \left (d+\sqrt {-\frac {a}{c}} e\right )^3 (3+2 p) \left (\sqrt {-\frac {a}{c}}+x\right ) \Gamma (1-2 p) \Gamma (-2 p) \Gamma (-p)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(-4 - 2*p)*(a + c*x^2)^p,x]

[Out]

(-2*(d + e*x)^(-3 - 2*p)*(a + c*x^2)^p*(1 - (d + e*x)/(d + Sqrt[-(a/c)]*e))^(1 + p)*Gamma[-2*(1 + p)]*((d + Sq
rt[-(a/c)]*e)^3*(Sqrt[-(a/c)] + x)*Gamma[1 - 2*p]*Gamma[-p]*Hypergeometric2F1[1, -p, -2*p, (2*Sqrt[-(a/c)]*(d
+ e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 3*(d + Sqrt[-(a/c)]*e)^3*p*(Sqrt[-(a/c)] + x)*Gamma[1 - 2
*p]*Gamma[-p]*Hypergeometric2F1[1, -p, -2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] +
x))] + 2*(d + Sqrt[-(a/c)]*e)^3*p^2*(Sqrt[-(a/c)] + x)*Gamma[1 - 2*p]*Gamma[-p]*Hypergeometric2F1[1, -p, -2*p,
 (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + (d + Sqrt[-(a/c)]*e)^2*(Sqrt[-(a/c)]
+ x)*(d + e*x)*Gamma[1 - 2*p]*Gamma[-p]*Hypergeometric2F1[1, -p, -2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-
(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 2*(d + Sqrt[-(a/c)]*e)^2*p*(Sqrt[-(a/c)] + x)*(d + e*x)*Gamma[1 - 2*p]*Gamma[
-p]*Hypergeometric2F1[1, -p, -2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + (d
+ Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x)*(d + e*x)^2*Gamma[1 - 2*p]*Gamma[-p]*Hypergeometric2F1[1, -p, -2*p, (2*Sq
rt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] - 3*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)^2*(d +
e*x)*Gamma[1 - p]*Gamma[-2*p]*Hypergeometric2F1[2, 1 - p, 1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c
)]*e)*(Sqrt[-(a/c)] + x))] - 4*Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)^2*p*(d + e*x)*Gamma[1 - p]*Gamma[-2*p]*Hyperg
eometric2F1[2, 1 - p, 1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 4*Sqrt[
-(a/c)]*(d + Sqrt[-(a/c)]*e)*p*(d + e*x)^2*Gamma[1 - p]*Gamma[-2*p]*Hypergeometric2F1[2, 1 - p, 1 - 2*p, (2*Sq
rt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + 3*Sqrt[-(a/c)]*(d + e*x)^3*Gamma[1 - p]*Gam
ma[-2*p]*Hypergeometric2F1[2, 1 - p, 1 - 2*p, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] +
 x))] + Sqrt[-(a/c)]*(d + Sqrt[-(a/c)]*e)^2*(d + e*x)*Gamma[1 - p]*Gamma[-2*p]*HypergeometricPFQ[{2, 2, 1 - p}
, {1, 1 - 2*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] - 2*Sqrt[-(a/c)]*(d + Sq
rt[-(a/c)]*e)*(d + e*x)^2*Gamma[1 - p]*Gamma[-2*p]*HypergeometricPFQ[{2, 2, 1 - p}, {1, 1 - 2*p}, (2*Sqrt[-(a/
c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)] + x))] + Sqrt[-(a/c)]*(d + e*x)^3*Gamma[1 - p]*Gamma[-2*p]*
HypergeometricPFQ[{2, 2, 1 - p}, {1, 1 - 2*p}, (2*Sqrt[-(a/c)]*(d + e*x))/((d + Sqrt[-(a/c)]*e)*(Sqrt[-(a/c)]
+ x))]))/(e*(d + Sqrt[-(a/c)]*e)^3*(3 + 2*p)*((e*(Sqrt[-(a/c)] - x))/(d + Sqrt[-(a/c)]*e))^p*(Sqrt[-(a/c)] + x
)*Gamma[1 - 2*p]*Gamma[-2*p]*Gamma[-p])

________________________________________________________________________________________

Maple [F]
time = 0.15, size = 0, normalized size = 0.00 \[\int \left (e x +d \right )^{-4-2 p} \left (c \,x^{2}+a \right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(-4-2*p)*(c*x^2+a)^p,x)

[Out]

int((e*x+d)^(-4-2*p)*(c*x^2+a)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-4-2*p)*(c*x^2+a)^p,x, algorithm="maxima")

[Out]

integrate((c*x^2 + a)^p*(x*e + d)^(-2*p - 4), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-4-2*p)*(c*x^2+a)^p,x, algorithm="fricas")

[Out]

integral((c*x^2 + a)^p*(x*e + d)^(-2*p - 4), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(-4-2*p)*(c*x**2+a)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(-4-2*p)*(c*x^2+a)^p,x, algorithm="giac")

[Out]

integrate((c*x^2 + a)^p*(x*e + d)^(-2*p - 4), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,x^2+a\right )}^p}{{\left (d+e\,x\right )}^{2\,p+4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^p/(d + e*x)^(2*p + 4),x)

[Out]

int((a + c*x^2)^p/(d + e*x)^(2*p + 4), x)

________________________________________________________________________________________